Кардіальні захворювання та хронічна хвороба нирок – фатальний альянс чи нові можливості в лікуванні? (Огляд літератури)
##plugins.themes.bootstrap3.article.main##
Анотація
Зростання захворюваності на серцеву недостатність (СН) та хронічну хворобу нирок (ХХН) спостерігається в усьому світі. Комбінація цих патологій значно підвищує ризик смертності та знижує якість життя (ЯЖ) пацієнтів.
Кардіоренальний синдром (КРС) – складний патологічний стан, що характеризується взаємозалежним ураженням серця та нирок, де дисфункція одного органа призводить до порушень функції іншого. Ця коморбідна патологія є значущою проблемою сучасної медицини через високу поширеність та значний вплив на прогноз пацієнтів. Існує п’ять типів КРС. Тип 1: гострий кардіальний синдром, що призводить до гострої ниркової недостатності. Тип 2: хронічна серцева недостатність (ХСН), яка спричиняє прогресуючу ХХН. Тип 3: гостре ураження нирок, що призводить до гострої серцевої недостатності. Тип 4: ХХН, яка спричинює розвиток ХСН. Тип 5: системні захворювання (наприклад сепсис), що одночасно викликають дисфункцію серця та нирок.
Сучасна фармакотерапія КРС спрямована на покращення функції обох органів та загального прогнозу пацієнтів. Зокрема, позитивний влив на перебіг КРС у сучасних дослідженнях продемонстрували: інгібітори натрійзалежного котранспортера глюкози 2-го типу, які знижують рівень глюкози в крові та мають кардіо- і нефропротекторні властивості (дапагліфлозин продемонстрував значне зниження ризику прогресування захворювання нирок, зниження ризику серцево-судинної смерті та госпіталізації при ХСН на 26% навіть у пацієнтів без цукрового діабету); фінеренон (селективний антагоніст мінералокортикоїдних рецепторів), який зменшує запалення та фіброз у нирках і серці, покращуючи результати лікування пацієнтів із КРС; агоністи рецепторів глюкагоноподібного пептиду-1 продемонстрували позитивний вплив на серцево-судинну систему та нирки; сакубітрил-валсартан – комбінований препарат, що інгібує неприлізин та блокує рецептори ангіотензину II, знижуючи ризик госпіталізацій та смерті у пацієнтів із СН.
Впровадження нових препаратів у клінічну практику може значно покращити прогноз та ЯЖ пацієнтів із КРС, проте вкрай актуальними залишається перспектива подальших досліджень та розробка нових терапевтичних стратегій для цієї складної коморбідної патології.
##plugins.themes.bootstrap3.article.details##

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори зберігають авторське право, а також надають журналу право першого опублікування оригінальних наукових статей на умовах ліцензії Creative Commons Attribution 4.0 International License, що дозволяє іншим розповсюджувати роботу з визнанням авторства твору та першої публікації в цьому журналі.
Посилання
Pippias M, Alfano G, Kelly DM, Soler MJ, De Chiara L, Olanrewaju TO, et al. Capacity for the management of kidney failure in the International Society of Nephrology Western Europe region: report from the 2023 ISN Global Kidney Health Atlas (ISN-GKHA). Kidney Int Suppl (2011). 2024;13(1):136–51. doi: 10.1016/j.kisu.2024.01.008.
World Health Organization. Cardiovascular diseases statistics [Internet]. Geneva: WHO; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Di Iorio B, et al. Pathophysiology of the cardio-renal syndromes types 1-5: An uptodate. Indian Heart J. 2017;69(2):255–65. doi: 10.1016/j.ihj.2017.01.005.
Cockwell P, Fisher LA. The global burden of chronic kidney disease. Lancet. 2020;395(10225):662–4. doi: 10.1016/S0140-6736(19)32977-0.
Jager KJ, Kovesdy C, Langham R, Rosenberg M, Jha V, Zoccali C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transplant. 2019;34(11):1803–05. doi: 10.1093/ndt/gfz174.
Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018;392(10159):2052–90. doi: 10.1016/S0140-6736(18)31694-5.
Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004;164(6):659–63. doi: 10.1001/archinte.164.6.659.
Chronic Kidney Disease Prognosis Consortium; Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073–81. doi: 10.1016/S0140-6736(10)60674-5.
Ronco C. The Cardiorenal Syndrome: Basis and Common Ground for a Multidisciplinary Patient-Oriented Therapy. Cardiorenal Med. 2011;1(1):3–4. doi: 10.1159/000323352.
Bagshaw SM, Cruz DN, Aspromonte N, Daliento L, Ronco F, Sheinfeld G, et al. Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrol Dial Transplant. 2010;25(5):1406–16. doi: 10.1093/ndt/gfq066.
Damman K, Navis G, Voors AA, Asselbergs FW, Smilde TD, Cleland JG, et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail. 2007;13(8):599–608. doi: 10.1016/j.cardfail.2007.04.008.
McCullough PA. Cardiorenal syndromes: pathophysiology to prevention. Int J Nephrol. 2010;2011:762590. doi: 10.4061/2011/762590.
Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J, et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13(6):422–30. doi: 10.1016/j.cardfail.2007.03.011.
Hebert K, Dias A, Delgado MC, Franco E, Tamariz L, Steen D, et al. Epidemiology and survival of the five stages of chronic kidney disease in a systolic heart failure population. Eur J Heart Fail. 2010;12(8):861–5. doi: 10.1093/eurjhf/hfq077.
Cruz DN, Bagshaw SM. Heart-kidney interaction: epidemiology of cardiorenal syndromes. Int J Nephrol. 2010;2011:351291. doi: 10.4061/2011/351291.
Bagshaw SM, Cruz DN, Aspromonte N, Daliento L, Ronco F, Sheinfeld G, et al. Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrol Dial Transplant. 2010;25(5):1406–16. doi: 10.1093/ndt/gfq066.
Cruz DN, Schmidt-Ott KM, Vescovo G, House AA, Kellum JA, Ronco C, et al. Pathophysiology of cardiorenal syndrome type 2 in stable chronic heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib Nephrol. 2013;182:117–36. doi: 10.1159/000349968.
Setoguchi S, Stevenson LW, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J. 2007;154(2):260–6. doi: 10.1016/j.ahj.2007.01.041.
Yap SC, Lee HT. Acute kidney injury and extrarenal organ dysfunction: new concepts and experimental evidence. Anesthesiology. 2012;116(5):1139–48. doi: 10.1097/ALN.0b013e31824f951b.
Prabhu SD. Cytokine-induced modulation of cardiac function. Circ Res. 2004;95(12):1140–53. doi: 10.1161/01.RES.0000150734.79804.92.
Kingma JG Jr, Vincent C, Rouleau JR, Kingma I. Influence of acute renal failure on coronary vasoregulation in dogs. J Am Soc Nephrol. 2006;17(5):1316–24. doi: 10.1681/ASN.2005101084.
Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B. The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J. 2005;26(1):11–7. doi: 10.1093/eurheartj/ehi020.
Redón J, Cea-Calvo L, Lozano JV, Fernández-Pérez C, Navarro J, Bonet A, et al. Kidney function and cardiovascular disease in the hypertensive population: the ERIC-HTA study. J Hypertens. 2006;24(4):663–9. doi: 10.1097/01.hjh.0000217848.10831.5f.
Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global Prevalence of Chronic Kidney Disease – A Systematic Review and Meta-Analysis. PLoS One. 2016;11(7):e0158765. doi: 10.1371/journal.pone.0158765.
Tai R, Ohashi Y, Mizuiri S, Aikawa A, Sakai K. Association between ratio of measured extracellular volume to expected body fluid volume and renal outcomes in patients with chronic kidney disease: a retrospective single-center cohort study. BMC Nephrol. 2014;15:189. doi: 10.1186/1471-2369-15-189.
Zoccali C, Moissl U, Chazot C, Mallamaci F, Tripepi G, Arkossy O, et al. Chronic Fluid Overload and Mortality in ESRD. J Am Soc Nephrol. 2017;28(8):2491–97. doi: 10.1681/ASN.2016121341.
Mills KT, Chen J, Yang W, Appel LJ, Kusek JW, Alper A, et al. Sodium Excretion and the Risk of Cardiovascular Disease in Patients With Chronic Kidney Disease. JAMA. 2016;315(20):2200–10. doi: 10.1001/jama.2016.4447.
Tsai YC, Chiu YW, Tsai JC, Kuo HT, Hung CC, Hwang SJ, et al. Association of fluid overload with cardiovascular morbidity and all-cause mortality in stages 4 and 5 CKD. Clin J Am Soc Nephrol. 2015;10(1):39–46. doi: 10.2215/CJN.03610414.
Qirjazi E, Salerno FR, Akbari A, Hur L, Penny J, Scholl T, et al. Tissue sodium concentrations in chronic kidney disease and dialysis patients by lower leg sodium-23 magnetic resonance imaging. Nephrol Dial Transplant. 2020:gfaa036. doi: 10.1093/ndt/gfaa036.
Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52. doi: 10.1038/nm.1960.
Inserra F, Forcada P, Castellaro A, Castellaro C. Chronic Kidney Disease and Arterial Stiffness: A Two-Way Path. Front Med (Lausanne). 2021;(8):765924. doi: 10.3389/fmed.2021.765924.
Chue CD, Townend JN, Steeds RP, Ferro CJ. Arterial stiffness in chronic kidney disease: causes and consequences. Heart. 2010;96(11):817–23. doi: 10.1136/hrt.2009.184879.
Roumeliotis S, Mallamaci F, Zoccali C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J Clin Med. 2020;9(8):2359. doi: 10.3390/jcm9082359.
Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med. 1999;340(17):1321–8. doi: 10.1056/NEJM199904293401704.
Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57(4):846–51. doi: 10.1161/HYPERTENSIONAHA.110.164780.
Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8. doi: 10.1056/NEJM199212313272704.
Park J, Campese VM, Nobakht N, Middlekauff HR. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease. J Appl Physiol (1985). 2008;105(6):1873–76. doi: 10.1152/japplphysiol. 90849.2008.
Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106(15):1974–9. doi: 10.1161/01.cir.0000034043.16664.96.
Hausberg M, Lang D, Levers A, Suwelack B, Kisters K, Tokmak F, et al. Sympathetic nerve activity in renal transplant patients before and after withdrawal of cyclosporine. J Hypertens. 2006;24(5):957–64. doi: 10.1097/01.hjh.0000222767.15100.e4.
Blankestijn PJ, London G, Fliser D, Jager KJ, Lindholm B, Goldsmith D, et al. Major pathways of the reno-cardiovascular link: the sympathetic and renin-angiotensin systems. Kidney Int Suppl (2011). 2011;1(1):13–6. doi: 10.1038/kisup.2011.3.
Zoccali C, Roumeliotis S, Mallamaci F. Sleep Apnea as a Cardiorenal Risk Factor in CKD and Renal Transplant Patients. Blood Purif. 2021;50(4-5):642–8. doi: 10.1159/000513424.
Kovesdy CP, Furth SL, Zoccali C; World Kidney Day Steering Committee. Obesity and kidney disease: hidden consequences of the epidemic. J Nephrol. 2017;30(1):1–10. doi: 10.1007/s40620-017-0377-y.
Siddiqi L, Prakken NH, Velthuis BK, Cramer MJ, Oey PL, Boer P, et al. Sympathetic activity in chronic kidney disease patients is related to left ventricular mass despite antihypertensive treatment. Nephrol Dial Transplant. 2010;25(10):3272–7. doi: 10.1093/ndt/gfq175.
Zoccali C, Mallamaci F, Tripepi G, Parlongo S, Cutrupi S, Benedetto FA, et al. Norepinephrine and concentric hypertrophy in patients with end-stage renal disease. Hypertension. 2002;40(1):41–6. doi: 10.1161/01.hyp.0000022063.50739.60.
Zoccali C, Mallamaci F, Adamczak M, de Oliveira RB, Massy ZA, Sarafidis P, et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc Res. 2023;119(11):2017–32. doi: 10.1093/cvr/cvad083.
Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol. 2006;290(2):262–72. doi: 10.1152/ajprenal.00099.2005.
Cai Q, Mukku VK, Ahmad M. Coronary artery disease in patients with chronic kidney disease: a clinical update. Curr Cardiol Rev. 2013;9(4):331–9. doi: 10.2174/1573403x10666140214122234.
Chonchol M, Whittle J, Desbien A, Orner MB, Petersen LA, Kressin NR. Chronic kidney disease is associated with angiographic coronary artery disease. Am J Nephrol. 2008;28(2):354–60. doi: 10.1159/000111829.
Chan CT, Levin NW, Chertow GM, Larive B, Schulman G, Kotanko P, et al. Determinants of cardiac autonomic dysfunction in ESRD. Clin J Am Soc Nephrol. 2010;5(10):1821–7. doi: 10.2215/CJN.03080410.
Boerrigter G, Costello-Boerrigter LC, Abraham WT, Sutton MG, Heublein DM, Kruger KM, et al. Cardiac resynchronization therapy improves renal function in human heart failure with reduced glomerular filtration rate. J Card Fail. 2008;14(7):539–46. doi: 10.1016/j.cardfail.2008.03.009.
Fishbane S, Spinowitz B. Update on Anemia in ESRD and Earlier Stages of CKD: Core Curriculum 2018. Am J Kidney Dis. 2018;71(3):423–35. doi: 10.1053/j.ajkd.2017.09.026.
Awan AA, Walther CP, Richardson PA, Shah M, Winkelmayer WC, Navaneethan SD. Prevalence, correlates and outcomes of absolute and functional iron deficiency anemia in nondialysis-dependent chronic kidney disease. Nephrol Dial Transplant. 2021;36(1):129–36. doi: 10.1093/ndt/gfz192.
Ma JZ, Ebben J, Xia H, Collins AJ. Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol. 1999;10(3):610–9. doi: 10.1681/ASN.V103610.
Robinson BM, Joffe MM, Berns JS, Pisoni RL, Port FK, Feldman HI. Anemia and mortality in hemodialysis patients: accounting for morbidity and treatment variables updated over time. Kidney Int. 2005;68(5):2323–30. doi: 10.1111/j.1523-1755.2005.00693.x.
Brookhart MA, Schneeweiss S, Avorn J, Bradbury BD, Liu J, Winkelmayer WC. Comparative mortality risk of anemia management practices in incident hemodialysis patients. JAMA. 2010;303(9):857–64. doi: 10.1001/jama.2010.206.
Levin A, Thompson CR, Ethier J, Carlisle EJ, Tobe S, Mendelssohn D, et al. Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am J Kidney Dis. 1999;34(1):125–34. doi: 10.1016/s0272-6386(99)70118-6.
Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. The impact of anemia on cardiomyopathy, morbidity, and and mortality in endstage renal disease. Am J Kidney Dis. 1996;28(1):53–61. doi: 10.1016/s0272-6386(96)90130-4.
Chapter 1: Introduction and definition of CKD-MBD and the development of the guideline statements. Kidney Int. 2009;76113:3–8. doi: 10.1038/ki.2009.189.
Isakova T, Wahl P, Vargas GS, Gutiérrez OM, Scialla J, Xie H, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8. doi: 10.1038/ki.2011.47.
Musgrove J, Wolf M. Regulation and Effects of FGF23 in Chronic Kidney Disease. Annu Rev Physiol. 2020;82:365–90. doi: 10.1146/annurev-physiol-021119-034650.
Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8. doi: 10.1038/sj.ki.5002009.
Wolf M, White KE. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease. Curr Opin Nephrol Hypertens. 2014;23(4):411–9. doi: 10.1097/01.mnh.0000447020.74593.6f.
Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408. doi: 10.1172/JCI46122.
Xue C, Yang B, Zhou C, Dai B, Liu Y, Mao Z, et al. Fibroblast Growth Factor 23 Predicts All-Cause Mortality in a Dose-Response Fashion in Pre-Dialysis Patients with Chronic Kidney Disease. Am J Nephrol. 2017;45(2):149–59. doi: 10.1159/000454959.
Gao S, Xu J, Zhang S, Jin J. Meta-Analysis of the Association between Fibroblast Growth Factor 23 and Mortality and Cardiovascular Events in Hemodialysis Patients. Blood Purif. 2019;47(1):24–30. doi: 10.1159/000496220.
London GM, De Vernejoul MC, Fabiani F, Marchais SJ, Guerin AP, Metivier F, et al. Secondary hyperparathyroidism and cardiac hypertrophy in hemodialysis patients. Kidney Int. 1987;32(6):900–7. doi: 10.1038/ki.1987.293.
Lishmanov A, Dorairajan S, Pak Y, Chaudhary K, Chockalingam A. Elevated serum parathyroid hormone is a cardiovascular risk factor in moderate chronic kidney disease. Int Urol Nephrol. 2012;44(2):541–7. doi: 10.1007/s11255-010-9897-2.
Ganesh SK, Stack AG, Levin NW, Hulbert-Shearon T, Port FK. Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J Am Soc Nephrol. 2001;12(10):2131–38. doi: 10.1681/ASN.V12102131.
Drechsler C, Pilz S, Obermayer-Pietsch B, Verduijn M, Tomaschitz A, Krane V, et al. Vitamin D deficiency is associated with sudden cardiac death, combined cardiovascular events, and mortality in haemodialysis patients. Eur Heart J. 2010;31(18):2253–61. doi: 10.1093/eurheartj/ehq246.
Russo D, Corrao S, Battaglia Y, Andreucci M, Caiazza A, Carlomagno A, et al. Progression of coronary artery calcification and cardiac events in patients with chronic renal disease not receiving dialysis. Kidney Int. 2011;80(1):112–8. doi: 10.1038/ki.2011.69.
Bashir A, Moody WE, Edwards NC, Ferro CJ, Townend JN, Steeds RP. Coronary Artery Calcium Assessment in CKD: Utility in Cardiovascular Disease Risk Assessment and Treatment? Am J Kidney Dis. 2015;65(6):937–48. doi: 10.1053/j.ajkd.2015.01.012.
Kovesdy CP, Anderson JE, Kalantar-Zadeh K. Association of serum bicarbonate levels with mortality in patients with non-dialysis-dependent CKD. Nephrol Dial Transplant. 2009;24(4):1232–37. doi: 10.1093/ndt/gfn633.
Navaneethan SD, Schold JD, Arrigain S, Jolly SE, Wehbe E, Raina R, et al. Serum bicarbonate and mortality in stage 3 and stage 4 chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(10):2395–402. doi: 10.2215/CJN.03730411.
Raphael KL, Zhang Y, Wei G, Greene T, Cheung AK, Beddhu S. Serum bicarbonate and mortality in adults in NHANES III. Nephrol Dial Transplant. 2013;28(5):1207–13. doi: 10.1093/ndt/gfs609.
Collister D, Ferguson TW, Funk SE, Reaven NL, Mathur V, Tangri N. Metabolic Acidosis and Cardiovascular Disease in CKD. Kidney Med. 2021;3(5):753–61. doi: 10.1016/j.xkme.2021.04.011.
Sarnak MJ, Poindexter A, Wang SR, Beck GJ, Kusek JW, Marcovina SM, et al. Serum C-reactive protein and leptin as predictors of kidney disease progression in the Modification of Diet in Renal Disease Study. Kidney Int. 2002;62(6):2208–15. doi: 10.1046/j.1523-1755.2002.00677.x.
Stenvinkel P, Wanner C, Metzger T, Heimbürger O, Mallamaci F, Tripepi G, et al. Inflammation and outcome in endstage renal failure: does female gender constitute a survival advantage? Kidney Int. 2002;62(5):1791–8. doi: 10.1046/j.1523-1755.2002.00637.x.
Himmelfarb J. Linking oxidative stress and inflammation in kidney disease: which is the chicken and which is the egg? Semin Dial. 2004;17(6):449–54. doi: 10.1111/j.0894-0959.2004.17605.x.
Dalrymple LS, Go AS. Epidemiology of acute infections among patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(5):1487–93. doi: 10.2215/CJN.01290308.
Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases. 2019;7(1):21. doi: 10.3390/diseases7010021.
Eustace JA, Astor B, Muntner PM, Ikizler TA, Coresh J. Prevalence of acidosis and inflammation and their association with low serum albumin in chronic kidney disease. Kidney Int. 2004;65(3):1031–40. doi: 10.1111/j.1523-1755.2004.00481.x.
Poole S, Bird TA, Selkirk S, Gaines-Das RE, Choudry Y, Stephenson SL, et al. Fate of injected interleukin 1 in rats: sequestration and degradation in the kidney. Cytokine. 1990;2(6):416–22. doi: 10.1016/1043-4666(90)90050-4.
Bemelmans MH, Gouma DJ, Buurman WA. Influence of nephrectomy on tumor necrosis factor clearance in a murine model. J Immunol. 1993;150(5):2007–17.
Cobo G, Lindholm B, Stenvinkel P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transplant. 2018;33(3):iii35-iii40. doi: 10.1093/ndt/gfy175.
Li WJ, Chen XM, Nie XY, Zhang J, Cheng YJ, Lin XX, et al. Cardiac troponin and C-reactive protein for predicting all-cause and cardiovascular mortality in patients with chronic kidney disease: a meta-analysis. Clinics (Sao Paulo). 2015;70(4):301–11. doi: 10.6061/clinics/2015(04)14.
Beddhu S, Baird BC, Zitterkoph J, Neilson J, Greene T. Physical activity and mortality in chronic kidney disease (NHANES III). Clin J Am Soc Nephrol. 2009;4(12):1901–06. doi: 10.2215/CJN.01970309.
Martins P, Marques EA, Leal DV, Ferreira A, Wilund KR, Viana JL. Association between physical activity and mortality in end-stage kidney disease: a systematic review of observational studies. BMC Nephrol. 2021;22(1):227. doi: 10.1186/s12882-021-02407-w.
Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70. doi: 10.1681/ASN.2011121175.
Zhang H, Xiang S, Dai Z, Fan Y. Asymmetric dimethylarginine level as biomarkers of cardiovascular or all-cause mortality in patients with chronic kidney disease: a meta-analysis. Biomarkers. 2021;26(7):579–85. doi: 10.1080/1354750X.2021.1954694.
Ye J, Dai Y, Mao H, Zheng W, Zhang J. Prognostic value of asymmetric dimethylarginine in patients with coronary artery disease: A meta-analysis. Nitric Oxide. 2021;109-110:50–6. doi: 10.1016/j.niox.2021.03.002.
Liabeuf S, Lenglet A, Desjardins L, Neirynck N, Glorieux G, Lemke HD, et al. Plasma beta-2 microglobulin is associated with cardiovascular disease in uremic patients. Kidney Int. 2012;82(12):1297–303. doi: 10.1038/ki.2012.301.
Nakamura T, Kawagoe Y, Matsuda T, Ueda Y, Shimada N, Ebihara I, et al. Oral ADSORBENT AST-120 decreases carotid intima-media thickness and arterial stiffness in patients with chronic renal failure. Kidney Blood Press Res. 2004;27(2):121–6. doi: 10.1159/000077536.
Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014;25(9):1897–907. doi: 10.1681/ASN.2013101062.
Kidney Disease: Improving Global Outcomes (KDIGO) Blood Pressure Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021;99(3S):1–87. doi: 10.1016/j.kint.2020.11.003.
Agarwal R, Sinha AD, Cramer AE, Balmes-Fenwick M, Dickinson JH, Ouyang F, et al. Chlorthalidone for Hypertension in Advanced Chronic Kidney Disease. N Engl J Med. 2021;385(27):2507–19. doi: 10.1056/NEJMoa2110730.
De Nicola L, Minutolo R, Chiodini P, Zoccali C, Castellino P, Donadio C, et al. Global approach to cardiovascular risk in chronic kidney disease: reality and opportunities for intervention. Kidney Int. 2006;69(3):538–45. doi: 10.1038/sj.ki.5000085.
SPRINT Research Group; Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015;373(22):2103–16. doi: 10.1056/NEJMoa1511939.
Dasgupta I, Zoccali C. Is the KDIGO Systolic Blood Pressure Target <120 mm Hg for Chronic Kidney Disease Appropriate in Routine Clinical Practice? Hypertension. 2022;79(1):4–11. doi: 10.1161/HYPERTENSIONAHA.121.18434.
Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):13–115. doi: 10.1161/HYP.0000000000000065.
Sarafidis PA, Persu A, Agarwal R, Burnier M, de Leeuw P, Ferro CJ, et al. Hypertension in dialysis patients: a consensus document by the European Renal and Cardiovascular Medicine (EURECA-m) working group of the European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) and the Hypertension and the Kidney working group of the European Society of Hypertension (ESH). Nephrol Dial Transplant. 2017;32(4):620–40. doi: 10.1093/ndt/gfw433.
Agarwal R, Flynn J, Pogue V, Rahman M, Reisin E, Weir MR. Assessment and management of hypertension in patients on dialysis. J Am Soc Nephrol. 2014;25(8):1630–46. doi: 10.1681/ASN.2013060601.
Pisano A, Bolignano D, Mallamaci F, D’Arrigo G, Halimi JM, Persu A, et al. Comparative effectiveness of different antihypertensive agents in kidney transplantation: a systematic review and meta-analysis. Nephrol Dial Transplant. 2020;35(5):878–87. doi: 10.1093/ndt/gfz092.
Liu Y, Ma X, Zheng J, Jia J, Yan T. Effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on cardiovascular events and residual renal function in dialysis patients: a meta-analysis of randomised controlled trials. BMC Nephrol. 2017;18(1):206. doi: 10.1186/s12882-017-0605-7.
Agarwal R, Sinha AD, Pappas MK, Abraham TN, Tegegne GG. Hypertension in hemodialysis patients treated with atenolol or lisinopril: a randomized controlled trial. Nephrol Dial Transplant. 2014;29(3):672–81. doi: 10.1093/ndt/gft515.
Ferro CJ, Mark PB, Kanbay M, Sarafidis P, Heine GH, Rossignol P, et al. Lipid management in patients with chronic kidney disease. Nat Rev Nephrol. 2018;14(12):727–49. doi: 10.1038/s41581-018-0072-9.
Cholesterol Treatment Trialists’ (CTT) Collaboration; Herrington WG, Emberson J, Mihaylova B, Blackwell L, Reith C, et al. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol. 2016;4(10):829–39. doi: 10.1016/S2213-8587(16)30156-5.
Charytan DM, Sabatine MS, Pedersen TR, Im K, Park JG, Pineda AL, et al. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J Am Coll Cardiol. 2019;73(23):2961–70. doi: 10.1016/j.jacc.2019.03.513.
Wilcox CS. Antihypertensive and Renal Mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) Inhibitors. Hypertension. 2020;75(4):894–901. doi: 10.1161/HYPERTENSIONAHA.119.11684.
Bhatt AS, Vaduganathan M, Claggett BL, Kulac IJ, Anand IS, Desai AS, et al. Cost Effectiveness of Dapagliflozin for Heart Failure Across the Spectrum of Ejection Fraction: An Economic Evaluation Based on Pooled, Individual Participant Data From the DELIVER and DAPA-HF Trials. J Am Heart Assoc. 2024;13(5):e032279. doi: 10.1161/JAHA.123.032279.
Urbanek K, Cappetta D, Bellocchio G, Coppola MA, Imbrici P, Telesca M, et al. Dapagliflozin protects the kidney in a non-diabetic model of cardiorenal syndrome. Pharmacol Res. 2023;188:106659. doi: 10.1016/j.phrs.2023.106659.
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995–2008. doi: 10.1056/NEJMoa1911303.
Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med. 2022;387(12):1089–98. doi: 10.1056/NEJMoa2206286.
Jongs N, Greene T, Chertow GM, McMurray JJV, Langkilde AM, Correa-Rotter R, et al. Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9(11):755–66. doi: 10.1016/S2213-8587(21)00243-6.
Wheeler DC, Stefánsson BV, Jongs N, Chertow GM, Greene T, Hou FF, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol. 2021;9(1):22–31. doi: 10.1016/S2213-8587(20)30369-7.
McEwan P, Gabb PD, Davis JA, Garcia Sanchez JJ, Sjöström CD, Barone S, et al. The long-term effects of dapagliflozin in chronic kidney disease: a time-to-event analysis. Nephrol Dial Transplant. 2024;39(12):2040–47. doi: 10.1093/ndt/gfae106.
Jhund PS, Solomon SD, Docherty KF, Heerspink HJL, Anand IS, Böhm M, et al. Efficacy of Dapagliflozin on Renal Function and Outcomes in Patients With Heart Failure With Reduced Ejection Fraction: Results of DAPAHF. Circulation. 2021;143(4):298–309. doi: 10.1161/CIRCULATIONAHA.120.050391.
Selvaraj S, Fu Z, Jones P, Kwee LC, Windsor SL, Ilkayeva O, et al. Metabolomic Profiling of the Effects of Dapagliflozin in Heart Failure With Reduced Ejection Fraction: DEFINE-HF. Circulation. 2022;146(11):808–18. doi: 10.1161/CIRCULATIONAHA.122.060402.
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347–57. doi: 10.1056/NEJMoa1812389.
Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436–46. doi: 10.1056/NEJMoa2024816.
Heerspink HJL, Cherney D, Postmus D, Stefánsson BV, Chertow GM, Dwyer JP, et al. A pre-specified analysis of the Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial on the incidence of abrupt declines in kidney function. Kidney Int. 2022;101(1):174–84. doi: 10.1016/j.kint.2021.09.005.
McEwan P, Gabb PD, Davis JA, Garcia Sanchez JJ, Sjöström CD, Barone S, et al. The long-term effects of dapagliflozin in chronic kidney disease: a time-to-event analysis. Nephrol Dial Transplant. 2024;39(12):2040–47. doi: 10.1093/ndt/gfae106.
Kawanami S, Egami Y, Abe M, Osuga M, Nohara H, Ukita K, et al. Randomized trial assessing worsening renal function with dapagliflozin addition in acute decompensated heart failure: ROAD-ADHF trial. Eur Heart J. 2024;45(1):ehae666.1038. doi: 10.1093/eurheartj/ehae666.1038.
Sattar N, Lee MMY, Kristensen SL, Branch KRH, Del Prato S, Khurmi NS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021;9(10):653–62. doi: 10.1016/S2213-8587(21)00203-5.
Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med. 2020;383(23):2219–29. doi: 10.1056/NEJMoa2025845.
Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med. 2021;385(24):2252–63. doi: 10.1056/NEJMoa2110956.
Okumura N, Jhund PS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, et al. Effects of Sacubitril/Valsartan in the PARADIGM-HF Trial (Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure) According to Background Therapy. Circ Heart Fail. 2016;9(9):e003212. doi: 10.1161/CIRCHEARTFAILURE.116.003212.
Kang H, Zhang J, Zhang X, Qin G, Wang K, Deng Z, et al. Effects of sacubitril/valsartan in patients with heart failure and chronic kidney disease: A meta-analysis. Eur J Pharmacol. 2020;884:173444. doi: 10.1016/j.ejphar.2020.173444.