Development of the Immune Response in Pneumonia Caused Pseudomonas aeruginosa (Part 1)
##plugins.themes.bootstrap3.article.main##
Abstract
Nosocomial bacterial pneumonia associated with Gram-negative pathogens, characterized by severe, high risk of complications and death. This article describes the immune response to infection with gram-negative bacterium Pseudomonas aeruginosa respiratory tract, which provide an effective clearance of the pathogen. The mechanisms of the respiratory tract showcased that an image-recognition receptors cells inducing pathogen-associated molecular structures Pseudomonas aeruginosa.
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright and grant the journal the first publication of original scientific articles under the Creative Commons Attribution 4.0 International License, which allows others to distribute work with acknowledgment of authorship and first publication in this journal.
References
Adamo R. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5 / R. Adamo, S. Sokol, G. Soong, M.I. Gomez, A. Prince // Am J Respir Cell Mol Biol. 2004 May;30(5):627-34. doi: 10.1165/rcmb.2003-0260OC.
Amiel E. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression / E. Amiel, R.R. Lovewell, G.A. O’Toole, D.A. Hogan, B. Berwin // Infect Immun. 2010 Jul;78(7):2937-45. doi: 10.1128/IAI.00144-10.
Anas A.A. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism / A.A. Anas, M.H. van Lieshout, T.A. Claushuis et al // Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L219-28. doi: 10.1152/ajplung.00078.2016.
Balloy V. Flagellin concentrations in expectorations from cystic fibrosis patients / V. Balloy, G. Thévenot, T. Bienvenu et al // BMC Pulm Med. 2014 Jun 9;14:100. doi: 10.1186/1471-2466-14-100.
Beatson S.A. Variation in bacterial flagellins: from sequence to structure / S.A. Beatson, T. Minamino, M.J. Pallen // Trends Microbiol. 2006;14: 151–5. doi: 10.1016/j.tim.2006.02.008.
Benmohamed F. Toll-like receptor 9 deficiency protects mice against Pseudomonas aeruginosa lung infection / F. Benmohamed, M. Medina, Y.Z. Wu et al // PLoS One. 2014 Mar 4;9(3):e90466. doi: 10.1371/journal.pone.0090466.
Bentham A. Animal NLRs provide structural insights into plant NLR function / A. Bentham, H. Burdett, P.A. Anderson, S.J. Williams, B. Kobe // Ann Bot. 2016 Aug 25. pii: mcw171.
Billod J.M. Computational Approaches to Toll-Like Receptor 4 Modulation / J.M. Billod, A. Lacetera, J. Guzmán-Caldentey, S. Martín-Santamaría // Molecules. 2016 Jul 30;21(8). pii: E994. doi: 10.3390/molecules21080994.
Blériot C. The interplay between regulated necrosis and bacterial infection / C. Blériot, M. Lecuit // Cell Mol Life Sci. 2016 Jun;73(11–12):2369-78. doi: 10. 1007/s00018-016-2206-1.
Chun J. TLR2-induced calpain cleavage of epithelial junctional proteins facilitates leukocyte transmigration / J. Chun, A. Prince // Cell Host Microbe. 2009 Jan 22;5(1):47-58. doi: 10.1016/j.chom.2008.11.009.
Cohen T.S. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia / T.S. Cohen, A.S. Prince // J Clin Invest. 2013 Apr; 123(4): 1630-7. doi: 10.1172/JCI66142.
Cunha L.D. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria / L.D. Cunha, D.S. Zamboni // Front Cell Infect Microbiol. 2013 Nov 26; 3:76. doi: 10.3389/fcimb.2013.00076.
de Vasconcelos N.M. Inflammasomes as polyvalent cell death platforms / N.M. de Vasconcelos, N. Van Opdenbosch, M. Lamkanfi // Cell Mol Life Sci. 2016 Jun;73(11–12):2335-47. doi: 10.1007/s00018-016-2204-3.
Descamps D. Toll#like receptor 5 (TLR5), IL-1в secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing / D. Descamps, M. Le Gars, V. Balloy et al // Proc Natl Acad Sci USA. 2012 Jan 31;109(5):1619-24. doi: 10.1073/pnas.1108464109.
Diaz Caballero J. Selective Sweeps and Parallel Pathoadaptation Drive Pseudomonas aeruginosa Evolution in the Cystic Fibrosis Lung / J. Diaz Caballero, S.T. Clark, B. Coburn et al // MBio. 2015 Sep 1;6(5):e00981-15. doi: 10.1128/mBio.00981-15.
Epelman S. Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs / S. Epelman, D. Stack, C. Bell et al // J Immunol. 2004 Aug 1;173(3):2031-40. doi: 10.4049/jimmunol.173.3.2031.
Farias R. The TAK1→IKKв→TPL2→MKK1/MKK2 Signaling Cascade Regulates IL-33 Expression in Cystic Fibrosis Airway Epithelial Cells Following Infection by Pseudomonas aeruginosa / R. Farias, S. Rousseau // Front Cell Dev Biol. 2016 Jan 11;3:87. doi: 10.3389/fcell.2015.00087.
Faure E. Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome / E. Faure, J.B. Mear, K. Faure, et al. // Am J Respir Crit Care Med. 2014 Apr 1;189(7):799-811. doi: 10.1164/rccm.201307-1358OC.
Folgori L. Healthcare-Associated Infections in Pediatric and Neonatal Intensive Care Units: Impact of Underlying. Risk Factors and Antimicrobial Resistance on 30-Day Case-Fatality in Italy and Brazil / L. Folgori, P. Bernaschi, S. Piga // Infect Control Hosp Epidemiol. 2016 Aug 11:1-8. doi: 10.1017/ice.2016.185.
Forstnerič V. Distinctive Recognition of Flagellin by Human and Mouse Toll-Like Receptor 5 / V. Forstnerič, K. Ivičak-Kocjan, A. Ljubetic, R. Jerala, M. Benčina // PLoS One. 2016 Jul 8;11(7):e0158894. doi: 10.1371/journal.pone.0158894.
Galal Y.S. Ventilator-Associated Pneumonia: Incidence, Risk Factors and Outcome in Paediatric Intensive Care Units at Cairo University Hospital / Y.S. Galal, M.R. Youssef, S.K. Ibrahiem // J Clin Diagn Res. 2016 Jun;10(6):SC06-11. doi: 10.7860/JCDR/2016/18570.7920.
Greene C.M. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor / C.M. Greene, H. Ramsay, R.J. Wells, S.J. O’Neill, N.G. McElvaney // Mediators Inflamm. 2010;2010:423241. doi: 10.1155/2010/423241.
Hajjar A.M. An essential role for non-bone marrow-derived cells in control of Pseudomonas aeruginosa pneumonia / A.M. Hajjar, H. Harowicz, H.D. Liggitt, P.J. Fink, C.B. Wilson, S.J. Skerrett // Am J Respir Cell Mol Biol. 2005 Nov;33(5):470-5. doi: 10.1165/rcmb.2005-0199OC.
Huber P. Pseudomonas aeruginosa renews its virulence factors / P. Huber, P. Basso, E. Reboud, I. Attree // Environ Microbiol Rep. 2016 Jul 18. doi: 10.1111/1758–2229.12443.
Hwang E.H. Toll/IL-1 domain-containing adaptor inducing IFN-β (TRIF) mediates innate immune responses in murine peritoneal mesothelial cells through TLR3 and TLR4 stimulation / Hwang E.H., Kim T.H., Oh S.M. et al // Cytokine. 2016 Jan;77:127-34. doi: 10.1016/j.cyto.2015.11.010.
Ioannidis I. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells / I. Ioannidis, F. Ye, B. McNally, et al // J Virol. – 2013. – № 87. – Р. 3261-3270. doi: 10.1128/JVI.01956-12.
Ivičak-Kocjan K. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor / K. Ivičak-Kocjan, G. Panter, M. Benčina, R. Jerala // Biochem Biophys Res Commun. 2013;435: 40-5. doi: 10.1016/j.bbrc.2013.04.030.
Kang S.S. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2 / S.S. Kang, J.R. Sim, C.H. Yun, S.H. Han // Arch Pharm Res. 2016 Aug 8.
Karalyan Z. IL-23/IL-17/G-CSF pathway is associated with granulocyte recruitment to the lung during African swine fever / Z. Karalyan, H. Voskanyan, Z. Ter-Pogossyan, D. Saroyan, E. Karalova // Vet Immunol Immunopathol. 2016 Oct 15;179:58-62. doi: 10.1016/j.vetimm.2016.08.005.
Kato K. MUC1 regulates epithelial inflammation and apoptosis by PolyI:C through inhibition of Toll/IL-1 receptor-domain-containing adapter-inducing IFN-beta (TRIF) ecruitment to Toll-like receptor 3 / K. Kato, E.P. Lillehoj, K.C. Kim // Am J Respir Cell Mol Biol. 2014 Sep;51(3):446-54. doi: 10.1165/rcmb.2014-0018OC.
Kepp O. Pyroptosis – a cell death modality of its kind? / O. Kepp, L. Galluzzi, L. Zitvogel, G. Kroemer // Eur J Immunol. 2010 Mar;40(3):627-30. doi: 10.1002/eji.200940160.
Lagoumintzis G. TNF-alpha induction by Pseudomonas aeruginosa lipopolysaccharide or slime-glycolipoprotein in human monocytes is regulated at the level of Mitogen-activated Protein Kinase activity: a distinct role of Toll-like receptor 2 and 4 / G. Lagoumintzis, P. Xaplanteri, G. Dimitracopoulos, F. Paliogianni // Scand J Immunol. 2008 Feb;67(2):193-203. doi: 10.1111/j.1365-3083.2007.02053.x.
Lavoie E.G. Innate immune responses to Pseudomonas aeruginosa infection / E.G. Lavoie, T. Wangdi, B.I. Kazmierczak // Microbes Infect. 2011 Dec; 13 (14–15): 1133-45. doi: 10.1016/j.micinf.2011.07.011.
Lechtenberg B.C. Structural mechanisms in NLR inflammasome signaling / B.C. Lechtenberg, P.D. Mace, S.J. Riedl // Curr Opin Struct Biol. 2014 Dec; 29:17-25. doi: 10.1016/j.sbi.2014.08.011.
Lee J. The hierarchy quorum sensing network in Pseudomonas aeruginosa / J. Lee, L. Zhang // Protein Cell. 2015 Jan;6(1):26-41. doi: 10.1007/s13238-014-0100-x.
Li X. Pseudomonas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration / X. Li, S. He, R. Li et
al // Nat Microbiol. 2016 Aug 8;1(10):16132. doi: 10.1038/nmicrobiol.2016.132.
Liu X. Toll-Like Receptor 2 Modulates the Balance of Regulatory T Cells and T Helper 17 Cells in Chronic Hepatitis C / X. Liu, J.H. Guan, B.C. Jiang, Z.S. Li, G.Z. Zhu // Viral Immunol. 2016 Jul-Aug;29(6):322-31. doi: 10.1089/vim.2016.0013.
Lovewell R.R. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa / R.R. Lovewell, Y.R. Patankar, B. Berwin // Am J Physiol Lung Cell Mol Physiol. 2014 Apr 1;306(7):L591-603. doi: 10.1152/ajplung.00335.2013.
Magnusson M. Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9 / M. Magnusson, R. Tobes, J. Sancho, E. Pareja // J Immunol. 2007 Jul 1;179(1):31-5. doi: 10.4049/jimmunol.179.1.31.
Maldonado R.F. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection / R.F. Maldonado, I. Sa-Correia, M.A. Valvano // FEMS Microbiol Rev. 2016 Jul;40(4):480-93. doi: 10.1093/femsre/fuw007.
Maltez V.I. Reassessing the Evolutionary Importance of Inflammasomes / V.I. Maltez, E.A. Miao // J Immunol. 2016 Feb 1; 196(3):956-62. doi: 10.4049/jimmunol.1502060.
Mayer A.K. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells / Mayer A.K., Muehmer M., Mages J. et al // J Immunol. 2007 Mar 1;178(5):3134-42. PMID: 17312161.
McIsaac S.M., Stadnyk A.W., Lin T.J. Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis / S.M. McIsaac, A.W. Stadnyk, T.J. Lin // J Leukoc Biol. 2012 Nov;92(5):977-85. doi: 10.1189/jlb.0811410.
Mijares L.A. Airway epithelial MyD88 restores control of Pseudomonas aeruginosa murine infection via an IL-1-dependent pathway / L.A. Mijares, T. Wangdi, C. Sokol et al // J Immunol. 2011 Jun 15; 186(12): 7080–8. doi: 10.4049/jimmunol.1003687.
Morris A.E. Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia / A.E. Morris, H.D. Liggitt, T.R. Hawn, S.J. Skerrett // Am J Physiol Lung Cell Mol Physiol. 2009 Dec;297(6):L1112-9. doi: 10.1152/ajplung.00155.2009.
Paeng S.H. YCG063 inhibits Pseudomonas aeruginosa LPS-induced inflammation in human retinal pigment epithelial cells through the TLR2-mediated AKT/NF-кB pathway and ROS-independent pathways / S.H. Paeng, W.S. Park, W.K. Jung et al // Int J Mol Med. 2015 Sep;36(3):808-16. doi: 10.3892/ijmm.2015.2266.
Park Y.S. PPARgamma inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism / Y.S. Park, E.P. Lillehoj, K. Kato, et al // Am J Physiol Lung Cell Mol Physiol. 2012 Apr 1;302(7):L679-87. doi: 10.1152/ajplung.00360.2011.
Parker D. Innate immune signaling activated by MDR bacteria in the airway / D. Parker, D. Ahn, T. Cohen, et al // Physiol Rev. 2016 Jan; 96(1):19-53. doi: 10.1152/physrev.00009.2015.
Pene F. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction / F. Pene, D. Grimaldi, B. Zuber et al // J Infect Dis. 2012 Sep 15;206(6):932-42. doi: 10.1093/infdis/jis438.
Pier G.B. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity // Int J Med Microbiol. 2007 Sep;297(5):277-95. doi: 10.1016/j.ijmm.2007.03.012.
Ranf S. Immune Sensing of Lipopolysaccharide in Plants and Animals: Same but Different // PLoS Pathog. 2016 Jun 9;12(6):e1005596. doi: 10.1371/journal.ppat.1005596.
Re F. IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells / F. Re, J.L. Strominger // J Immunol. 2004 Dec 15;173(12):7548-55. doi: 10.4049/jimmunol.173.12.7548.
Rieber N. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease / N. Rieber, A. Brand, A. Hector et al // J Immunol. 2013 Feb 1;190(3):1276-84. doi: 10.4049/jimmunol.1202144.
Ryu J.C. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2 / Ryu J.C., Kim M.J., Kwon Y. et al // Mucosal Immunol. 2016 Aug 24. doi: 10.1038/mi.2016.73.
Sandiumenge A. Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management / А. Sandiumenge, J. Rello // Curr Opin Pulm Med. 2012 May;18(3):187-93. doi: 10.1097/MCP.0b013e328351f974.
Sawa T. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review / T. Sawa, M. Shimizu, K. Moriyama, J.P. Wiener-Kronish // MBio. 2015 Sep 1;6(5):e00981-15. doi: 10.1128/mBio.00981-15.
Sawa T. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response // J Intensive Care. 2014 Feb 18;2(1):10. doi: 10.1186/2052-0492-2-10.
Shaan L. Gellatly. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses / L. Shaan Gellatly, E.W. Robert // Pathog Dis. 2013 Apr;67(3):159-73. doi: 10.1111/2049-632X.12033.
Sharma D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation / D. Sharma, T.D. Kanneganti // J Cell Biol. 2016 Jun 20;213(6):617-29. doi: 10.1083/jcb.201602089.
Shen H. Burn injury triggered dysfunction in dendritic cell response to TLR9 activation and resulted in skewed T cell functions / H. Shen, P.E. de Almeida, K.H. Kang, P. Yao, C.W. Chan // PLoS One. 2012;7(11): e50238. doi: 10.1371/journal.pone.0050238.
Skerrett S.J. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa / S.J. Skerrett, C.B. Wilson, H.D. Liggitt, A.M. Hajjar // Am J Physiol Lung Cell Mol Physiol. 2007 Jan;292(1):L312-22. doi: 10.1152/ajplung.00250.2006.
Sutterwala F.S. NLRC4/IPAF: a CARD carrying member of the NLR family / F.S. Sutterwala, R.A. Flavell // Clin Immunol. 2009 Jan;130(1):2-6. doi: 10.1016/j.clim.2008.08.011.
Ulland T.K. Evasion of inflammasome activation by microbial pathogens / T.K. Ulland, P.J. Ferguson, F.S. Sutterwala et al. // J Clin Invest. 2015 Feb; 125(2):469-77. doi: 10.1172/JCI75254.
Valenza G. Resistance to tobramycin and colistin in isolates of Pseudomonas aeruginosa from chronically colonized patients with cystic fibrosis under antimicrobial treatment / G. Valenza, K. Radike, C. Schoen, S. Horn et al // Scand J Infect Dis. 2010 Dec;42(11–12):885-9. doi: 10.3109/00365548.2010.509333.
Vanaja S.K. Mechanisms of inflammasome activation: recent advances and novel insights / S.K. Vanaja, V.A. Rathinam, K.A. Fitzgerald, et al. // Trends Cell Biol. 2015 May;25(5):308-15. doi: 10.1016/j.tcb.2014.12.009.
Vance R.E. The NAIP/NLRC4 inflammasomes // Curr Opin Immunol. 2015 Feb;32:84-9. doi: 10.1016/j.coi.2015.01.010.
Verma A. Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response / A. Verma, S.K. Arora, S.K. Kuravi, R. Ramphal // Infect Immun. 2005 Dec;73(12):8237-46. doi: 1128/IAI.73.12.8237-8246.2005.
Vinckx T. The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin / T. Vinckx, Q. Wei, S. Matthijs, et al // Microbiology. 2010 Mar;156(Pt 3):678-86. doi: 10.1099/mic.0.031971-0.
Williams B.J. Pseudomonas aeruginosa: host defence in lung diseases / B.J. Williams, J. Dehnbostel, T.S. Blackwell // Respirology. 2010 Oct;15(7):1037-56. doi: 10.1111/j.1440-1843.2010.01819.x.
Wonnenberg B. The role of IL-1β in Pseudomonas aeruginosa in lung infection / B. Wonnenberg, M. Bischoff, C. Beisswenger et al // Cell Tissue Res. 2016 May; 364(2): 225-9. doi: 10.1007/s00441-016-2387-9.
Xaplanteri P. Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2 / P. Xaplanteri, G. Lagoumintzis, G. Dimitracopoulos, F. Paliogianni // Eur J Immunol. 2009 Mar;39(3):730-40. doi: 10.1002/eji.200838872.
Yoon S. Structural basis of TLR5-flagellin recognition and signaling / S. Yoon, O. Kurnasov, V. Natarajan, M. Hong et al // Science. 2012;335: 859-64. doi: 10.1126/science.1215584.
Zgurskaya H.I., Löpez C.A., Gnanakaran S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It / H.I. Zgurskaya, C.A. Löpez, S. Gnanakaran // ACS Infect Dis. 2015; 1(11):512-522. doi: 10.1021/acsinfecdis.5b00097.
Zhang S. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway / Zhang S., Yang N., Ni S. et al // Int J Clin Exp Pathol. 2014 Sep 15;7(10):6626-34. PMID: 25400741.
Zhao K. Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the Toll-like receptor 4 signaling pathway / K. Zhao, X. Deng, C. He, B. Yue, M. Wu // Infect Immun. 2013 Dec;81(12):4509-18. doi: 10.1128/ IAI.01008-13.
Zhao Y. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus / Y. Zhao, F. Shao // Immunol Rev. 2015 May; 265(1): 85-102. doi: 10.1111/imr.12293.