Розвиток імунної відповіді при пневмонії, спричиненої Pseudomonas aeruginosa (частина 1)
##plugins.themes.bootstrap3.article.main##
Анотація
Нозокоміальні бактеріальні пневмонії, асоційовані з грамнегативними збудниками, характеризуються тяжким перебігом, високим ризиком розвитку ускладнень і летального наслідку. У даній статті розглянуті реакції імунної системи на інфікування грамнегативною бактерією Pseudomonas aeruginosa респіраторного тракту, які забезпечують ефективний кліренс патогена. Продемонстровані механізми індукції образрозпізнавальних рецепторів клітин респіраторного тракту патоген-асоційованими молекулярними структурами Pseudomonas aeruginosa.
##plugins.themes.bootstrap3.article.details##
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори зберігають авторське право, а також надають журналу право першого опублікування оригінальних наукових статей на умовах ліцензії Creative Commons Attribution 4.0 International License, що дозволяє іншим розповсюджувати роботу з визнанням авторства твору та першої публікації в цьому журналі.
Посилання
Adamo R. Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5 / R. Adamo, S. Sokol, G. Soong, M.I. Gomez, A. Prince // Am J Respir Cell Mol Biol. 2004 May;30(5):627-34. doi: 10.1165/rcmb.2003-0260OC.
Amiel E. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression / E. Amiel, R.R. Lovewell, G.A. O’Toole, D.A. Hogan, B. Berwin // Infect Immun. 2010 Jul;78(7):2937-45. doi: 10.1128/IAI.00144-10.
Anas A.A. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism / A.A. Anas, M.H. van Lieshout, T.A. Claushuis et al // Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L219-28. doi: 10.1152/ajplung.00078.2016.
Balloy V. Flagellin concentrations in expectorations from cystic fibrosis patients / V. Balloy, G. Thévenot, T. Bienvenu et al // BMC Pulm Med. 2014 Jun 9;14:100. doi: 10.1186/1471-2466-14-100.
Beatson S.A. Variation in bacterial flagellins: from sequence to structure / S.A. Beatson, T. Minamino, M.J. Pallen // Trends Microbiol. 2006;14: 151–5. doi: 10.1016/j.tim.2006.02.008.
Benmohamed F. Toll-like receptor 9 deficiency protects mice against Pseudomonas aeruginosa lung infection / F. Benmohamed, M. Medina, Y.Z. Wu et al // PLoS One. 2014 Mar 4;9(3):e90466. doi: 10.1371/journal.pone.0090466.
Bentham A. Animal NLRs provide structural insights into plant NLR function / A. Bentham, H. Burdett, P.A. Anderson, S.J. Williams, B. Kobe // Ann Bot. 2016 Aug 25. pii: mcw171.
Billod J.M. Computational Approaches to Toll-Like Receptor 4 Modulation / J.M. Billod, A. Lacetera, J. Guzmán-Caldentey, S. Martín-Santamaría // Molecules. 2016 Jul 30;21(8). pii: E994. doi: 10.3390/molecules21080994.
Blériot C. The interplay between regulated necrosis and bacterial infection / C. Blériot, M. Lecuit // Cell Mol Life Sci. 2016 Jun;73(11–12):2369-78. doi: 10. 1007/s00018-016-2206-1.
Chun J. TLR2-induced calpain cleavage of epithelial junctional proteins facilitates leukocyte transmigration / J. Chun, A. Prince // Cell Host Microbe. 2009 Jan 22;5(1):47-58. doi: 10.1016/j.chom.2008.11.009.
Cohen T.S. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia / T.S. Cohen, A.S. Prince // J Clin Invest. 2013 Apr; 123(4): 1630-7. doi: 10.1172/JCI66142.
Cunha L.D. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria / L.D. Cunha, D.S. Zamboni // Front Cell Infect Microbiol. 2013 Nov 26; 3:76. doi: 10.3389/fcimb.2013.00076.
de Vasconcelos N.M. Inflammasomes as polyvalent cell death platforms / N.M. de Vasconcelos, N. Van Opdenbosch, M. Lamkanfi // Cell Mol Life Sci. 2016 Jun;73(11–12):2335-47. doi: 10.1007/s00018-016-2204-3.
Descamps D. Toll#like receptor 5 (TLR5), IL-1в secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing / D. Descamps, M. Le Gars, V. Balloy et al // Proc Natl Acad Sci USA. 2012 Jan 31;109(5):1619-24. doi: 10.1073/pnas.1108464109.
Diaz Caballero J. Selective Sweeps and Parallel Pathoadaptation Drive Pseudomonas aeruginosa Evolution in the Cystic Fibrosis Lung / J. Diaz Caballero, S.T. Clark, B. Coburn et al // MBio. 2015 Sep 1;6(5):e00981-15. doi: 10.1128/mBio.00981-15.
Epelman S. Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs / S. Epelman, D. Stack, C. Bell et al // J Immunol. 2004 Aug 1;173(3):2031-40. doi: 10.4049/jimmunol.173.3.2031.
Farias R. The TAK1→IKKв→TPL2→MKK1/MKK2 Signaling Cascade Regulates IL-33 Expression in Cystic Fibrosis Airway Epithelial Cells Following Infection by Pseudomonas aeruginosa / R. Farias, S. Rousseau // Front Cell Dev Biol. 2016 Jan 11;3:87. doi: 10.3389/fcell.2015.00087.
Faure E. Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome / E. Faure, J.B. Mear, K. Faure, et al. // Am J Respir Crit Care Med. 2014 Apr 1;189(7):799-811. doi: 10.1164/rccm.201307-1358OC.
Folgori L. Healthcare-Associated Infections in Pediatric and Neonatal Intensive Care Units: Impact of Underlying. Risk Factors and Antimicrobial Resistance on 30-Day Case-Fatality in Italy and Brazil / L. Folgori, P. Bernaschi, S. Piga // Infect Control Hosp Epidemiol. 2016 Aug 11:1-8. doi: 10.1017/ice.2016.185.
Forstnerič V. Distinctive Recognition of Flagellin by Human and Mouse Toll-Like Receptor 5 / V. Forstnerič, K. Ivičak-Kocjan, A. Ljubetic, R. Jerala, M. Benčina // PLoS One. 2016 Jul 8;11(7):e0158894. doi: 10.1371/journal.pone.0158894.
Galal Y.S. Ventilator-Associated Pneumonia: Incidence, Risk Factors and Outcome in Paediatric Intensive Care Units at Cairo University Hospital / Y.S. Galal, M.R. Youssef, S.K. Ibrahiem // J Clin Diagn Res. 2016 Jun;10(6):SC06-11. doi: 10.7860/JCDR/2016/18570.7920.
Greene C.M. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor / C.M. Greene, H. Ramsay, R.J. Wells, S.J. O’Neill, N.G. McElvaney // Mediators Inflamm. 2010;2010:423241. doi: 10.1155/2010/423241.
Hajjar A.M. An essential role for non-bone marrow-derived cells in control of Pseudomonas aeruginosa pneumonia / A.M. Hajjar, H. Harowicz, H.D. Liggitt, P.J. Fink, C.B. Wilson, S.J. Skerrett // Am J Respir Cell Mol Biol. 2005 Nov;33(5):470-5. doi: 10.1165/rcmb.2005-0199OC.
Huber P. Pseudomonas aeruginosa renews its virulence factors / P. Huber, P. Basso, E. Reboud, I. Attree // Environ Microbiol Rep. 2016 Jul 18. doi: 10.1111/1758–2229.12443.
Hwang E.H. Toll/IL-1 domain-containing adaptor inducing IFN-β (TRIF) mediates innate immune responses in murine peritoneal mesothelial cells through TLR3 and TLR4 stimulation / Hwang E.H., Kim T.H., Oh S.M. et al // Cytokine. 2016 Jan;77:127-34. doi: 10.1016/j.cyto.2015.11.010.
Ioannidis I. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells / I. Ioannidis, F. Ye, B. McNally, et al // J Virol. – 2013. – № 87. – Р. 3261-3270. doi: 10.1128/JVI.01956-12.
Ivičak-Kocjan K. Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor / K. Ivičak-Kocjan, G. Panter, M. Benčina, R. Jerala // Biochem Biophys Res Commun. 2013;435: 40-5. doi: 10.1016/j.bbrc.2013.04.030.
Kang S.S. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2 / S.S. Kang, J.R. Sim, C.H. Yun, S.H. Han // Arch Pharm Res. 2016 Aug 8.
Karalyan Z. IL-23/IL-17/G-CSF pathway is associated with granulocyte recruitment to the lung during African swine fever / Z. Karalyan, H. Voskanyan, Z. Ter-Pogossyan, D. Saroyan, E. Karalova // Vet Immunol Immunopathol. 2016 Oct 15;179:58-62. doi: 10.1016/j.vetimm.2016.08.005.
Kato K. MUC1 regulates epithelial inflammation and apoptosis by PolyI:C through inhibition of Toll/IL-1 receptor-domain-containing adapter-inducing IFN-beta (TRIF) ecruitment to Toll-like receptor 3 / K. Kato, E.P. Lillehoj, K.C. Kim // Am J Respir Cell Mol Biol. 2014 Sep;51(3):446-54. doi: 10.1165/rcmb.2014-0018OC.
Kepp O. Pyroptosis – a cell death modality of its kind? / O. Kepp, L. Galluzzi, L. Zitvogel, G. Kroemer // Eur J Immunol. 2010 Mar;40(3):627-30. doi: 10.1002/eji.200940160.
Lagoumintzis G. TNF-alpha induction by Pseudomonas aeruginosa lipopolysaccharide or slime-glycolipoprotein in human monocytes is regulated at the level of Mitogen-activated Protein Kinase activity: a distinct role of Toll-like receptor 2 and 4 / G. Lagoumintzis, P. Xaplanteri, G. Dimitracopoulos, F. Paliogianni // Scand J Immunol. 2008 Feb;67(2):193-203. doi: 10.1111/j.1365-3083.2007.02053.x.
Lavoie E.G. Innate immune responses to Pseudomonas aeruginosa infection / E.G. Lavoie, T. Wangdi, B.I. Kazmierczak // Microbes Infect. 2011 Dec; 13 (14–15): 1133-45. doi: 10.1016/j.micinf.2011.07.011.
Lechtenberg B.C. Structural mechanisms in NLR inflammasome signaling / B.C. Lechtenberg, P.D. Mace, S.J. Riedl // Curr Opin Struct Biol. 2014 Dec; 29:17-25. doi: 10.1016/j.sbi.2014.08.011.
Lee J. The hierarchy quorum sensing network in Pseudomonas aeruginosa / J. Lee, L. Zhang // Protein Cell. 2015 Jan;6(1):26-41. doi: 10.1007/s13238-014-0100-x.
Li X. Pseudomonas aeruginosa infection augments inflammation through miR-301b repression of c-Myb-mediated immune activation and infiltration / X. Li, S. He, R. Li et
al // Nat Microbiol. 2016 Aug 8;1(10):16132. doi: 10.1038/nmicrobiol.2016.132.
Liu X. Toll-Like Receptor 2 Modulates the Balance of Regulatory T Cells and T Helper 17 Cells in Chronic Hepatitis C / X. Liu, J.H. Guan, B.C. Jiang, Z.S. Li, G.Z. Zhu // Viral Immunol. 2016 Jul-Aug;29(6):322-31. doi: 10.1089/vim.2016.0013.
Lovewell R.R. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa / R.R. Lovewell, Y.R. Patankar, B. Berwin // Am J Physiol Lung Cell Mol Physiol. 2014 Apr 1;306(7):L591-603. doi: 10.1152/ajplung.00335.2013.
Magnusson M. Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9 / M. Magnusson, R. Tobes, J. Sancho, E. Pareja // J Immunol. 2007 Jul 1;179(1):31-5. doi: 10.4049/jimmunol.179.1.31.
Maldonado R.F. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection / R.F. Maldonado, I. Sa-Correia, M.A. Valvano // FEMS Microbiol Rev. 2016 Jul;40(4):480-93. doi: 10.1093/femsre/fuw007.
Maltez V.I. Reassessing the Evolutionary Importance of Inflammasomes / V.I. Maltez, E.A. Miao // J Immunol. 2016 Feb 1; 196(3):956-62. doi: 10.4049/jimmunol.1502060.
Mayer A.K. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells / Mayer A.K., Muehmer M., Mages J. et al // J Immunol. 2007 Mar 1;178(5):3134-42. PMID: 17312161.
McIsaac S.M., Stadnyk A.W., Lin T.J. Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis / S.M. McIsaac, A.W. Stadnyk, T.J. Lin // J Leukoc Biol. 2012 Nov;92(5):977-85. doi: 10.1189/jlb.0811410.
Mijares L.A. Airway epithelial MyD88 restores control of Pseudomonas aeruginosa murine infection via an IL-1-dependent pathway / L.A. Mijares, T. Wangdi, C. Sokol et al // J Immunol. 2011 Jun 15; 186(12): 7080–8. doi: 10.4049/jimmunol.1003687.
Morris A.E. Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia / A.E. Morris, H.D. Liggitt, T.R. Hawn, S.J. Skerrett // Am J Physiol Lung Cell Mol Physiol. 2009 Dec;297(6):L1112-9. doi: 10.1152/ajplung.00155.2009.
Paeng S.H. YCG063 inhibits Pseudomonas aeruginosa LPS-induced inflammation in human retinal pigment epithelial cells through the TLR2-mediated AKT/NF-кB pathway and ROS-independent pathways / S.H. Paeng, W.S. Park, W.K. Jung et al // Int J Mol Med. 2015 Sep;36(3):808-16. doi: 10.3892/ijmm.2015.2266.
Park Y.S. PPARgamma inhibits airway epithelial cell inflammatory response through a MUC1-dependent mechanism / Y.S. Park, E.P. Lillehoj, K. Kato, et al // Am J Physiol Lung Cell Mol Physiol. 2012 Apr 1;302(7):L679-87. doi: 10.1152/ajplung.00360.2011.
Parker D. Innate immune signaling activated by MDR bacteria in the airway / D. Parker, D. Ahn, T. Cohen, et al // Physiol Rev. 2016 Jan; 96(1):19-53. doi: 10.1152/physrev.00009.2015.
Pene F. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction / F. Pene, D. Grimaldi, B. Zuber et al // J Infect Dis. 2012 Sep 15;206(6):932-42. doi: 10.1093/infdis/jis438.
Pier G.B. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity // Int J Med Microbiol. 2007 Sep;297(5):277-95. doi: 10.1016/j.ijmm.2007.03.012.
Ranf S. Immune Sensing of Lipopolysaccharide in Plants and Animals: Same but Different // PLoS Pathog. 2016 Jun 9;12(6):e1005596. doi: 10.1371/journal.ppat.1005596.
Re F. IL-10 released by concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells / F. Re, J.L. Strominger // J Immunol. 2004 Dec 15;173(12):7548-55. doi: 10.4049/jimmunol.173.12.7548.
Rieber N. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease / N. Rieber, A. Brand, A. Hector et al // J Immunol. 2013 Feb 1;190(3):1276-84. doi: 10.4049/jimmunol.1202144.
Ryu J.C. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2 / Ryu J.C., Kim M.J., Kwon Y. et al // Mucosal Immunol. 2016 Aug 24. doi: 10.1038/mi.2016.73.
Sandiumenge A. Ventilator-associated pneumonia caused by ESKAPE organisms: cause, clinical features, and management / А. Sandiumenge, J. Rello // Curr Opin Pulm Med. 2012 May;18(3):187-93. doi: 10.1097/MCP.0b013e328351f974.
Sawa T. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review / T. Sawa, M. Shimizu, K. Moriyama, J.P. Wiener-Kronish // MBio. 2015 Sep 1;6(5):e00981-15. doi: 10.1128/mBio.00981-15.
Sawa T. The molecular mechanism of acute lung injury caused by Pseudomonas aeruginosa: from bacterial pathogenesis to host response // J Intensive Care. 2014 Feb 18;2(1):10. doi: 10.1186/2052-0492-2-10.
Shaan L. Gellatly. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses / L. Shaan Gellatly, E.W. Robert // Pathog Dis. 2013 Apr;67(3):159-73. doi: 10.1111/2049-632X.12033.
Sharma D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation / D. Sharma, T.D. Kanneganti // J Cell Biol. 2016 Jun 20;213(6):617-29. doi: 10.1083/jcb.201602089.
Shen H. Burn injury triggered dysfunction in dendritic cell response to TLR9 activation and resulted in skewed T cell functions / H. Shen, P.E. de Almeida, K.H. Kang, P. Yao, C.W. Chan // PLoS One. 2012;7(11): e50238. doi: 10.1371/journal.pone.0050238.
Skerrett S.J. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa / S.J. Skerrett, C.B. Wilson, H.D. Liggitt, A.M. Hajjar // Am J Physiol Lung Cell Mol Physiol. 2007 Jan;292(1):L312-22. doi: 10.1152/ajplung.00250.2006.
Sutterwala F.S. NLRC4/IPAF: a CARD carrying member of the NLR family / F.S. Sutterwala, R.A. Flavell // Clin Immunol. 2009 Jan;130(1):2-6. doi: 10.1016/j.clim.2008.08.011.
Ulland T.K. Evasion of inflammasome activation by microbial pathogens / T.K. Ulland, P.J. Ferguson, F.S. Sutterwala et al. // J Clin Invest. 2015 Feb; 125(2):469-77. doi: 10.1172/JCI75254.
Valenza G. Resistance to tobramycin and colistin in isolates of Pseudomonas aeruginosa from chronically colonized patients with cystic fibrosis under antimicrobial treatment / G. Valenza, K. Radike, C. Schoen, S. Horn et al // Scand J Infect Dis. 2010 Dec;42(11–12):885-9. doi: 10.3109/00365548.2010.509333.
Vanaja S.K. Mechanisms of inflammasome activation: recent advances and novel insights / S.K. Vanaja, V.A. Rathinam, K.A. Fitzgerald, et al. // Trends Cell Biol. 2015 May;25(5):308-15. doi: 10.1016/j.tcb.2014.12.009.
Vance R.E. The NAIP/NLRC4 inflammasomes // Curr Opin Immunol. 2015 Feb;32:84-9. doi: 10.1016/j.coi.2015.01.010.
Verma A. Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response / A. Verma, S.K. Arora, S.K. Kuravi, R. Ramphal // Infect Immun. 2005 Dec;73(12):8237-46. doi: 1128/IAI.73.12.8237-8246.2005.
Vinckx T. The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin / T. Vinckx, Q. Wei, S. Matthijs, et al // Microbiology. 2010 Mar;156(Pt 3):678-86. doi: 10.1099/mic.0.031971-0.
Williams B.J. Pseudomonas aeruginosa: host defence in lung diseases / B.J. Williams, J. Dehnbostel, T.S. Blackwell // Respirology. 2010 Oct;15(7):1037-56. doi: 10.1111/j.1440-1843.2010.01819.x.
Wonnenberg B. The role of IL-1β in Pseudomonas aeruginosa in lung infection / B. Wonnenberg, M. Bischoff, C. Beisswenger et al // Cell Tissue Res. 2016 May; 364(2): 225-9. doi: 10.1007/s00441-016-2387-9.
Xaplanteri P. Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2 / P. Xaplanteri, G. Lagoumintzis, G. Dimitracopoulos, F. Paliogianni // Eur J Immunol. 2009 Mar;39(3):730-40. doi: 10.1002/eji.200838872.
Yoon S. Structural basis of TLR5-flagellin recognition and signaling / S. Yoon, O. Kurnasov, V. Natarajan, M. Hong et al // Science. 2012;335: 859-64. doi: 10.1126/science.1215584.
Zgurskaya H.I., Löpez C.A., Gnanakaran S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It / H.I. Zgurskaya, C.A. Löpez, S. Gnanakaran // ACS Infect Dis. 2015; 1(11):512-522. doi: 10.1021/acsinfecdis.5b00097.
Zhang S. Pretreatment of lipopolysaccharide (LPS) ameliorates D-GalN/LPS induced acute liver failure through TLR4 signaling pathway / Zhang S., Yang N., Ni S. et al // Int J Clin Exp Pathol. 2014 Sep 15;7(10):6626-34. PMID: 25400741.
Zhao K. Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the Toll-like receptor 4 signaling pathway / K. Zhao, X. Deng, C. He, B. Yue, M. Wu // Infect Immun. 2013 Dec;81(12):4509-18. doi: 10.1128/ IAI.01008-13.
Zhao Y. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus / Y. Zhao, F. Shao // Immunol Rev. 2015 May; 265(1): 85-102. doi: 10.1111/imr.12293.