Atherosclerosis and the Structural and Functional State of the Vessels of the Carotid and Vertebro-basilar Basins
##plugins.themes.bootstrap3.article.main##
Abstract
In connection with modern pathogenetic ideas about the mechanisms of development of ischemic stroke, the early diagnosis of this disease becomes even more important. A relevant issue at the present stage is the information content of non-invasive ultrasound research methods used to study the state of the cerebral arteries that participate in the blood supply to the brain.
The objective: to study the structural and functional state of the vessels of the carotid and vertebro-basilar pools in elderly patients with cerebral atherosclerosis (CA) of stage 1–3, including depending on the hemispheric localization of the ischemic focus.
Materials and methods. 229 patients with CA of the 2nd – 3rd degree took part in a comprehensive clinical and instrumental study. Patients were divided into 4 groups: I – the general group of patients who underwent ischemic atherothrombotic stroke in the basin of the middle cerebral artery (IS); II – in the right hemisphere (RH); ІІІ – transferred IS in the left hemisphere (LH); ІV – with CA of 1–2 degree (without IS – comparison group). Subsequently, elderly patients from 55 to 75 years old participated in the comparison of groups.
Results. In chronic cerebrovascular diseases, a steadily progressing atherosclerotic process is accompanied by a decrease in blood flow velocity in the main arteries of the head. Moreover, changes in LSBV (Linear systolic blood velocity) are detected by transcranial dopplerography at earlier stages both at the extra– and intracranial level, and blood flow depression initially occurs both in the arteries of the vertebro-basilar basin and in the carotid channel. The identification of changes in a Doppler study, in general, precedes the increase in symptoms of organic damage to the nervous system. Compared to patients with initial manifestations of CA, patients who underwent IS are characterized by a high frequency of hemodynamically significant stenosis, a thickening of complex intima-media, a statistically significant decrease in LSBV and an increase in pulsatory and peripheral resistance index in individual vessels of the carotid and vertebro basilar basins on both sides.
Conclusion. Structural and functional features of cerebral vessels in patients after ischemic atherothrombotic stroke in the late recovery period have hemispheric features. Moreover, a statistically significant difference in the rate of cerebral blood flow was observed only in the vessels of the carotid basin on the right, and the indices of peripheral vascular resistance and pulsativity were increased in different vessels of both pools from 2 sides.##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain the copyright and grant the journal the first publication of original scientific articles under the Creative Commons Attribution 4.0 International License, which allows others to distribute work with acknowledgment of authorship and first publication in this journal.
References
Adla T, Adlova R. Multimodality imaging of carotid stenosis. Int J Angiol. 2014;24:179–184. doi: 10.1055/s-0035-1556056
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e1–e458. doi: 10.1161/CIR.0000000000000485.
Canpolat U, Ozer N. Noninvasive cardiac imaging for the diagnosis of coronary artery disease in women. Anadolu Kardiyol Derg. 2014;14:741–746. doi: 10.5152/akd.2014.5406.
De Weerd M, Greving JP, Hedblad B, Lorenz MW, Mathiesen EB, O’Leary DH, et al. Prevalence of asymptomatic carotid artery stenosis in the general population: an individual participant data meta-analysis. Stroke. 2010;41:1294–1297. doi: 10.1161/STROKEAHA.110.581058.
Dowsley T, Al-Mallah M, Ananthasubramaniam K, Dwivedi G, McArdle B, Chow BJW. The role of noninvasive imaging in coronary artery disease detection, prognosis, and clinical decision making. Can J Cardiol. 2013;29:285–296. doi: 10.1016/j.cjca.2012.10.022.
Huibers A, De Borst GJ, Wan S, Kennedy F, Giannopoulos A, Moll FL, et al. Non-invasive carotid artery imaging to identify the vulnerable plaque: current status and future goals. Eur J Vasc Endovasc Surg. 2015;50:563–572. doi:10.1016/j.ejvs.2015.06.113.
Jm W, Fm C, Jj B, Wartolowska K, Non-invasive BE. Review: noninvasive imaging techniques may be useful for diagnosing 70% to 99% carotid stenosis in symptomatic patients. Diagn ACP J Club. 2006;145:77.
Kristensen T, Hovind P, Iversen HK, Andersen UB. Screening with Doppler ultrasound for carotid artery stenosis in patients with stroke or transient ischaemic attack. Clin Physiol Funct Imaging. 2018;38:617–621. doi: 10.1111/cpf.12456.
Lan W-C, Chen Y-H, Liu S-H. Non-invasive imaging modalities for the diagnosis of coronary artery disease: the present and the future. Tzu Chi Med J. 2013;25:206–212. doi: 10.1016/j.tcmj.2013.04.004.
Loizou CP. A review of ultrasound common carotid artery image and video segmentation techniques. Med Biol Eng Comput. 2014;52:1073–1093. doi: 10.1007/s11517-014-1203-5.
Menchón-Lara RM, Sancho-Gómez JL, Bueno-Crespo A. Early-stage atherosclerosis detection using deep learning over carotid ultrasound images. Appl Soft Comput J. 2016;49:616–628. doi: 10.1016/j.asoc.2016.08.055.
Naqvi TZ, Lee M-S. Carotid Intimamedia thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging. 2014;7:1025–1038. doi: 10.1016/j.jcmg.2013.11.014.
Onanno LIB, Arino SIM, Ramanti PLB, Ottile FAS. Validation of a computer-aided diagnosis system for the automatic identification of carotid atherosclerosis. Ultrasound Med Biol. 2019;41:509–516.
Ovbiagele B, Goldstein LB, Higashida RT, Howard VJ, Johnston SC, Khavjou OA, et al. Forecasting the future of stroke in the united states: a policy statement from the American heart association and American stroke association. Stroke. 2013;44:2361–2375. doi: 10.1161/STR.0b013e31829734f2.
Ricotta JJ, Pagan J, Xenos M, Alemu Y, Einav S, Bluestein D. Cardiovascular disease management: the need for better diagnostics. Med Biol Eng Comput. 2008;46:1059–1068. doi: 10.1007/s11517-008-0416-x.
Saba L, Sanfilippo R, Sannia S, Anzidei M, Montisci R, Mallarini G, et al. Association between carotid artery plaque volume, composition, and ulceration: a retrospective assessment with MDCT. Am J Roentgenol. 2012;199:151–156. doi: 10.2214/AJR.11.6955.
Yamauchi K, Enomoto Y, Otani K, Egashira Y, Iwama T. Prediction of hyperperfusion phenomenon after carotid artery stenting and carotid angioplasty using quantitative DSA with cerebral circulation time imaging. J Neurointerv Surg. 2018;10:579–582. doi: 10.1136/neurintsurg-2017-013259.
Zhang X, Jie G, Yao X, Dai Z, Xu G, Cai Y, et al. DSA-based quantitative assessment of cerebral hypoperfusion in patients with asymmetric carotid stenosis. Mol Cell Biomech. 2019;16:27–39. doi: 10.32604/mcb.2019.06140.
Zhao S, Gao Z, Zhang H, Xie Y, Luo J, Ghista D, et al. Robust segmentation of intima-media borders with different morphologies and dynamics during the cardiac cycle. IEEE J Biomed Health Inform. 2018;22:1571–1582. doi: 10.1109/JBHI.2017.2776246.
Кузнецова С.М., Кузнецов В.В., Егорова М.С., Шульженко Д.В. Особенности церебральной гемодинамики у больных атеротромботическим и кардиоэмболическим ишемическим инсультом в восстановительный период. Международный неврологический журнал, 2011; № 2 (40), 18-22.