Heart Involvement in Diabetes mellitus Patients (Literature review)

##plugins.themes.bootstrap3.article.main##

Lyubov Shkala

Abstract

Diabetes mellitus (DM) is one of the most significant medical and social health problems worldwide. The main cause of death in patients with DM is cardiovascular diseases, which leads to the significant decrease in quality of life and life expectancy.


The aim of this literature review is analyze of the frequency, mechanisms and manifestations of heart disease in diabetes patients.


A significant amount of the modern researches is devoted to the diagnosis and treatment of the diabetes complications, including diabetic cardiomyopathy (DC). According to many authors, heart disease in diabetes is associated with the formation of DC, comorbid coronary heart disease and arterial hypertension. DC occurs in 16.8–54% of patients with diabetes and is an independent factor which increases the death risk by 50–60%.


Numerous scientific studies have been devoted to the diagnosis and treatment of DC, emphasizing that in order to reduce cardiovascular disease and mortality in patients with diabetes, it is necessary, above all, to achieve glycemic control. Diabetic history, age, comorbidities, atherosclerotic lesions, smoking, overweight or obesity also play an important role.


The main aspects of the development and impact of diabetes on the health and life of patients are the untimely diagnosis of this disease, its multifactorial pathogenesis, progressive course and severity of complications. Due to development of the early complications and disability, studies of morphofunctional changes in the myocardium in diabetes are extremely relevant, as cardiomyopathy may increase the risk of myocardial infarction and heart failure.


The rapid increase in the number of patients with diabetes, many of whom die from cardiovascular complications, makes the problem of diabetic heart disease one of the most pressing health problems. Treatment of these patients should include correction of carbohydrate metabolism, control of blood lipid composition, decrease in myocardial ischemia, correction of the myocardial metabolism and the risk of heart failure.

##plugins.themes.bootstrap3.article.details##

How to Cite
Shkala, L. (2022). Heart Involvement in Diabetes mellitus Patients: (Literature review). Family Medicine, (1-2), 81–84. https://doi.org/10.30841/2307-5112.1-2.2022.260509
Section
Lectures and reviews
Author Biography

Lyubov Shkala, Bogomolets National Medical University

Liubov V. Shkala,

Department of Propedeutics of Internal Medicine No 1

References

Sokolova LK, Belchina YuB, Pushkarev VV, Cherviakova SA, Vatseba TS, Kovzun OI, et al. The effect of metfotmin treatment on the level of GLP-1, NT-proBNP and endothelin-1 in patients with type 2 diabetes mellitus. International Journal of Endocrinology. 2020;16(8):26–31. doi: 10.22141/2224-0721.16.8.2020.222882.

Bardenheier BH, Lin J, Zhuo X, AliM K, Thompson TJ, Cheng YJ, et al. Compression of disability between two birth cohorts of US adults with diabetes, 1992-2012: a prospective longitudinal analysis. Lancet Diabetes Endocrinol. 2016;4(8):686–94. doi: 10.1016/S2213-8587(16)30090-0.

McEwen LN, Karter AJ, Curb JD, Marrero DG, Crosson JC, Herman WH. Temporal trends in recording of diabetes on death certificates: results from Translating Research Into Action for Diabetes (TRIAD). Diabetes Care. 2011;34(7):1529–33. doi: 10.2337/dc10-2312.

Lallukka T, Ervast J, Mattendorfer-Ruz E. The joint contribution of diabetes and work to premature death during working age: a population-based study in Sweden. Scand J Public Health. 2016;44(6):580–6. doi: 10.1177/1403494816655059.

Skrypnyk NV. Osoblyvosti patohenezu ta likuvannya diabetychnoyi avtonomnoyi neyropatiyi (ohlyad literatury). Liky Ukrayiny. 2012;2(158):6–14.

Karavayev PG, Veklich AS, Koziolova N.A. Diabeticheskaya kardiomiopatiya: osobennosti serdechno-sosudistogo remodelirovaniya. Ros kardiol zhurn. 2019;(11):427. doi: 10.15829/1560-4071-2019-11-42-47.

Kyak YUH, Kyyak HYU, Barnett OYU. Spetsyfichnist diabetychnoyi kardiomiopatiyi za nayavnosti komorbidnykh sertsevo-sudynnykh zakhvoryuvan: kliniko-ultrastrukturni. Mizhnar endokrynol zhurn. 2016;5(77):33–8. doi: 10.22141/2224-0721.5.77.2016.78751.

Jia G, DeMarco G, Jia VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12 (3):144–53. doi: 10.1038/nrendo.2015.216.

Zhang EL, Wu YJ. Metabolic memory: mechanisms and implications for diabetic vasculopathies. Sci China Life Sci. 2014;57(8):845–51. doi: 10.1007/s11427-014-4710-6.

Serhiyenko VO. Osoblyvosti variatyvnosti arterialnoho tysku v khvorykh iz diabetychnoyu kardiomiopatiyeyu. Klin endokrynol ta endokrynna khir. 2009;2 (27):24–31.

Obrezan AG. Struktura serdechnososudistykh zabolevaniy u bolnykh sakharnym diabetom 2 tipa, diabeticheskaya kardiomiopatiya kak osoboye sostoyaniye miokarda. Mizhnar yendokrinol zhurn. 2010;4(28):18–22.

Huang YC, Chang PY, Hwang JS, Ning H-C. Association of small dense lowdensity lipoprotein cholesterol in type 2 diabetics with coronary artery disease. Biomed J. 2014;37(6):375–9. doi: 10.4103/2319-4170.132883.

Serhiyenko VO. Patohenez diabetychnoyi kardiovaskulyarnoyi neyropatiyi. Zhurn. NAMN Ukrayiny. 2015;21(2):142–57.

Mankovskiy BN. Diabeticheskaya polineyropatiya – epidemiologiya, patogenez, klinicheskiye proyavleniya, diagnostika i lecheniye. V: Karachentsev YUI, Kazakov AV, Kravchun NA, Ilina IM, redaktory. 100 izbrannykh lektsiy po endokrinologii (vtoroy vypusk). Kharkov; 2014, p. 164–71.

Belenkaya LV, Sholokhov LF, Darenskaya MA, Mikhalevich IM. Sostoyaniye protsessov perekisnogo okisleniya lipidov i antioksidantnoy zashchity u muzhchin bolnykh sakharnym diabetom 1-go tipa. Klin med. 2016;1(3):12–5.

Vlasenko MV. Uskladnennya tsukrovoho diabetu – diabetychna dystalna polineyropatiya: patofiziolohiya i variant patohenetychnoho likuvannya. Mizhnar endokrynol zhurn. 2011;7(39):44–9.

De Simone G, Devereux RB, Chinali M, Lee ET, Galloway JM, Barac A, et al. Diabetes and incident heart failure in hypertensive and normotensive participants of the Strong Heart Study. J Hypertens. 2010;28(2):353–60. doi: 10.1097/HJH.0b013e3283331169.

Holscher ME, Bode C, Bugger H. Diabetic cardiomyopathy: does the type of diabetes matter? Int J Mol Sci. 2016;17(12):2136. doi: 10.3390/ijms17122136.

Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142(3):375–415. doi: 10.1016/j.pharmthera.2014.01.003.

Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetol. 2014;57(4):660–71. doi: 10.1007/s00125-014-3171-6.

Jia G, Hill MA, Sowers JR. Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity. Circulation Research. 2018;122(4):624–38. doi: 10.1161/CIRCRESAHA.117.311586.

Kranstuber AL, Del Rio C, Biesiadecki BJ, Hamlin RL, Ottobre J, Gyorke S, et al. Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Frontiers in Physiol. 2012;3:292. doi: 10.3389/fphys.2012.00292.

Shao CH, Capek HL, Patel KP, Wang M, Tang K, DeSouza C, et al. Carbonylation Contributes to SERCA2a Activity Loss and Diastolic Dysfunction in a Rat Model of Type 1 Diabetes. Diabetes. 2011;60(3):947–59. doi: 10.2337/db10-1145.

Jia G, Habibi J, Bostick BP, Ma L, De-Marco VG, Aroor AR, et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension. 2015;65(3):531–9. doi: 10.1161/HYPERTENSIONAHA.114.04737.

Xu Y-Z, Zhang X, Wang L, Zhang F, Qiu Q, Liu M-L, et al. An Increased Circulating Angiotensin II Concentration is Associated with Hypoadiponectinemia and Postprandial Hyperglycemia in Men with Nonalcoholic Fatty Liver Disease. Int Medicine. 2013;52(8):855–61. doi: 10.2169/internalmedicine.52.8839.

Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131(6):550–9. doi: 10.1161/CIRCULATIONAHA.114.009625.

Widyantoro B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, et al. Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelialto-mesenchymal transition. Circulation. 2010;121(22):2407–18.

Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol. 2018;71(3):339–51. doi: 10.1016/j.jacc.2017.11.019.

Liu X, Yang ZG, Gao Y, Xie LJ, Jiang L, Hu BY, et al. Left ventricular subclinical myocardial dysfunction in uncomplicated type 2 diabetes mellitus is associated with impaired myocardial perfusion: a contrast-enhanced cardiovascular magnetic resonance study. Cardiovasc Diabetol. 2018;17(1):139. doi: 10.1186/s12933-018-0782-0.

Gulsin GS, Swarbrick DJ, Hunt WH, Levelt E, Graham-Brown MPM, Parke KS, et al. Relation of aortic stiffness to left ventricular remodeling in younger adults with type 2 diabetes. Diabetes. 2018;67(7):1395–400. doi: 10.2337/db18-0112.

Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18(2):149–66. doi: 10.1007/s10741-012-9313-3.

Paiman EHM, van Eyk HJ, Bizino MB, Dekkers IA, de Heer P, Smit JWA, Jazet IM, Lamb HJ. Phenotyping diabetic cardiomyopathy in Europeans and South Asians.Cardiovasc Diabetol. 2019;18:133. doi: 10.1186/s12933-019-0940-z.

Grigorescu ED, Lacatusu CM, Floria M, Mihai BM, Cretu I, Sorodoc L. Left ventricular diastolic dysfunction in type 2 diabetes-progress and perspectives. Diagnostics. 2019;993:121. doi: 10.3390/diagnostics9030121.

Lassen MCH, Jensen MT, Biering-Sorensen T, Mogelvang R, Fritz-Hansen T, Vilsboll T, Rossing P, Jorgensen PG. Prognostic value of ratio of transmitral early filling velocity to early diastolic strain rate in patients with Type 2 diabetes. Eur Heart J Cardiovasc Imaging. 2019;20(10):1171–78. doi: 10.1093/ehjci/jez075.

Jensen MT, Sogaard P, Gustafsson I, Bech J, Hansen TF, Almdal T, et al. Echocardiography improves prediction of major adverse cardiovascular events in a population with type 1 diabetes and without known heart disease: the Thousand & 1 Study. Diabetol. 2019;62(12):2354–64.

Ritchie RH, Dale Abel E. Basic Mechanisms of Diabetic Heart Disease. Circ Res. 2020;126(11):1501–25. doi: 10.1161/CIRCRESAHA.120.315913.

Ohkuma T, Komorita Y, Peters SAE, Woodward M. Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals. Diabetol. 2019;62(9):1550–60. doi: 10.1007/s00125-019-4926-x.

Echouffo-Tcheugui JB, Masoudi FA, Bao H, Spatz ES, Fonarow GC. Diabetes mellitus and outcomes of cardiac resynchronization with implantable cardioverter-defibrillator therapy in older patients with heart failure. Circ Arrhythm Electrophysiol. 2016;9(8):e004132. doi: 10.1161/CIRCEP.116.004132.

Oe H, Nakamura K, Kihara H, Shimada K, Fukuda S, Takagi T, et al. Comparison of effects of sitagliptin and voglibose on left ventricular diastolic dysfunction in patients with type 2 diabetes: results of the 3D trial. Cardiovasc Diabetol. 2015;14:83. doi: 10.1186/s12933-015-0242-z.

Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet. 2015;385(9982):2107–117. doi: 10.1016/S0140-6736(14)61402-1.